If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-3x-405=0
a = 2; b = -3; c = -405;
Δ = b2-4ac
Δ = -32-4·2·(-405)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-57}{2*2}=\frac{-54}{4} =-13+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+57}{2*2}=\frac{60}{4} =15 $
| x/6+10=−6 | | 5x^2-43x=24 | | 8+x÷2=-12 | | B÷7=8;b=56 | | X/2x45=175 | | 4r+19+9r-6+8r+3=180 | | -6-7(c+10)=-6-7(c+10) | | N/2x45=175 | | k-1/3=5/3 | | x-4+4x+11+3x+2=180 | | 30-3y=12 | | -3y-10=-13 | | 21r^2-13r-28=-8 | | 2x+5+5x+7+3x-2=180 | | 3x^2-9=2x^2+27 | | 3x-21+2x+9=180 | | 2x+5+5x+7+3x-2=810 | | a+2=2a-10 | | 24=-5x-9 | | 0.10x^2-5x+15=0 | | 3-x=-43 | | 3/4m+1/2=3/8 | | 3-x=-46 | | (4x+3)+(4x+3)=(12) | | 6t^2-35t-6=0 | | 3x-2(4x+3)-(x+5)=6-(2x+) | | 50x^2-47x=0 | | 4y-3=180 | | x4x+5=49 | | 2x/1=12 | | -30=5(x-9 | | x6x+4=11 |